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Abstract

Duarte, Luiz Fernando Cunha; Valladão, Davi Michel (Advisor). SARI-
MAX.jl: Open-Source Time Series Modeling in Julia through
Advanced Optimization. Rio de Janeiro, 2024. 68p. Dissertação de
Mestrado – Departamento de Engenharia de Produção, Pontifícia Uni-
versidade Católica do Rio de Janeiro.

This dissertation introduces SARIMAX.jl, a Julia package designed for
time series estimation. The primary contribution of this work is the separa-
tion of model formulation from the estimation process, which allows for the
selection of the most appropriate estimation method for each specific situation.
SARIMAX.jl employs advanced optimization techniques to enhance stability,
robustness, and accuracy in modeling SARIMA processes. The package also
offers flexibility by allowing users to incorporate regularization and switch ob-
jective functions. Through a comparative study, SARIMAX.jl demonstrates
superior performance across various in-sample metrics and competitive per-
formance when compared to the R forecast package in the M4 competition
monthly series, establishing it as a reliable open-source option for time se-
ries modeling. Additionally, this dissertation proposes a mixed-integer opti-
mization approach for the specification and estimation of a specific subset of
SARIMA models, known as seasonal autoregressive integrated (SARI) models.
This approach guarantees global optimality in parameter estimation and the
specification of the integration order and autoregressive part.

Keywords
Time Series; Mixed integer optimization; Estimation; Automatic

specification; ARIMA.



Resumo

Duarte, Luiz Fernando Cunha; Valladão, Davi Michel. SARIMAX.jl:
Modelagem de séries temporais open-source em Julia usando
otimização avançada. Rio de Janeiro, 2024. 68p. Dissertação de Mes-
trado – Departamento de Engenharia de Produção, Pontifícia Universi-
dade Católica do Rio de Janeiro.

Esta dissertação apresenta o SARIMAX.jl, um pacote em Julia projetado
para estimação de séries temporais. A principal contribuição deste trabalho é
a dissociação da formulação do modelo do processo de estimação, permitindo
a seleção do método de estimação mais apropriado para cada situação especí-
fica. O SARIMAX.jl emprega técnicas avançadas de otimização para aprimo-
rar a estabilidade, robustez e precisão na modelagem de processos SARIMA.
O pacote também oferece flexibilidade ao permitir que os usuários incorporem
regularização e alterem as funções objetivo. Por meio de um estudo compara-
tivo, o SARIMAX.jl demonstra um desempenho superior em várias métricas
de amostra e um desempenho competitivo em comparação com o pacote R fo-
recast nas séries mensais da competição M4, estabelecendo-se como uma opção
confiável e de código aberto para modelagem de séries temporais. Além disso,
esta dissertação propõe uma abordagem de otimização inteira mista para a
especificação e estimação de um subconjunto específico de modelos SARIMA,
conhecidos como modelos autorregressivos integrados sazonais (SARI). Esta
abordagem garante a optimalidade global na estimação de parâmetros e na
especificação da ordem de integração e da parte autorregressiva.

Palavras-chave
Séries Temporais; Programação inteira mista; Estimação; Especificação

automática; ARIMA.
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1
Introduction

The integration of time series modeling with new optimization techniques
represents a significant advancement by bridging two areas that have histor-
ically been separated due to computational limitations. Previous methodolo-
gies, though effective, were constrained by rigid structures where model formu-
lation was closely tied to the estimation process. This close association made
it difficult to customize or vary the formulation to suit different needs.

By formulating the SARIMA model within an optimization framework,
the model formulation is separated from the estimation process, which is then
handled by optimization solvers. This separation provides greater flexibility,
allowing for more customization in the model formulation.

This paradigm shift is evident in the formulation of the Autoregressive
Integrated Moving Average (ARIMA) model as an optimization problem.
Departing from traditional approaches resolves lingering issues and enhances
flexibility and adaptability in time series modeling.

The ARIMA model, within the optimization framework, offers precise
estimations and customization options. This approach removes previous bar-
riers by dissociating the problem formulation from the estimation process and
allows for domain-specific constraints, parameter regularization, variable se-
lection, and integration of advanced features.

Additionally, this work introduces a novel method for optimal specifica-
tion of a subset within the ARIMA family—Seasonal Autoregressive Integrated
(SARI) models. This advancement moves away from conventional heuristics,
aiming for precise, data-driven model specifications to improve forecasting ac-
curacy.

Utilizing the JuMP framework in the Julia programming language is
central to this effort. It empowers the estimation process while remaining
flexible with solver selection, enhancing problem-solving efficiency without
extensive reformulation.

The following chapters provide a detailed exploration of this fusion
of time series modeling and optimization. The ARIMA model, cast as an
optimization problem, serves as a catalyst for innovation in time series analysis.



2
Relevant Literature

Time series data, characterized by observations collected over regular
intervals, permeate various domains, offering insights into the dynamics of
phenomena ranging from economics and finance to climate and public health.
In the realm of time series analysis, the introduction of the Autoregressive
Integrated Moving Average (ARIMA) models in the 1970s marked a pivotal
moment. Developed by George Box and Gwilym Jenkins as part of the Box-
Jenkins methodology (BOX; JENKINS, 1970), ARIMA models, an extension
of the Autoregressive Moving Average (ARMA) family, emerged as a powerful
and versatile tool for the analysis and forecasting of time series.

The introduction of ARIMA models unfolded in an era strikingly dis-
tinct from today’s computational landscape. At its inception, computational
capabilities were in their nascent stages, and the field of optimization was only
beginning to take shape. These circumstances presented formidable challenges
in the modeling and analysis of time series data. However, the seminal work of
George Box and Gwilym Jenkins laid the groundwork for further investigation
and refinement, with the alluring prospect of leveraging modern computational
tools for optimization. Over the ensuing decades, the evolution of computa-
tional resources has been nothing short of remarkable, marked by exponential
growth. Simultaneously, the field of optimization has experienced substantial
maturation.

The remarkable evolution of computational power bears profound im-
plications for fields that have traditionally operated independently of opti-
mization methodologies. As an illustration, Bertsimas (BERTSIMAS; DUNN;
PASCHALIDIS, 2017) has calculated a striking speedup factor of 800 billion
in the performance of Mixed Integer Optimization (MIP) solvers. This dra-
matic leap in computational efficiency has motivated the exploration of an
optimization-based approach to Classification and Regression Trees (CART),
bridging the gap between optimization and machine learning. It’s worth noting
that the estimation and specification of such tree models were initially intro-
duced by Breiman (BREIMAN, 1984) as heuristics, a practical compromise
necessary by the limited computational power available at the time.

These computational advancements are particularly advantageous for
statistical modeling, especially within the domain of time series analysis. The
fusion of contemporary computational capabilities with established statistical
modeling techniques opens new horizons for data-driven decision-making. The
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convergence of these previously distinct domains not only promises enhanced
comprehension of temporal data patterns but also unleashes the potential
of sophisticated modeling approaches, all within the evolving framework of
computational technologies.

2.1
Base Literature

Since its inception, the estimation of Autoregressive Integrated Moving
Average (ARIMA) models has presented a significant challenge in time series
analysis. This challenge arises primarily from the inherent non-linearity intro-
duced by the Moving Average (MA) component. The MA component relies on
past estimation errors multiplied by model-dependent coefficients, resulting in
a non-linear relationship within the model.

The non-linear nature of the Moving Average (MA) component in Autore-
gressive Integrated Moving Average (ARIMA) models introduces complexity
into the parameter estimation process. As a result, ARIMA model estimation
remains technically intricate and mathematically demanding, often necessitat-
ing advanced statistical and computational methods to ensure the reliability
and accuracy of the results.

During its early stages, ARIMA model estimation primarily relied on
Maximum Likelihood Estimation (MLE)(FISHER, 1922), a rigorous statis-
tical approach. MLE aims to identify model parameters that maximize the
likelihood of observed data, thereby aligning with the structure of the model.
This methodology involves formulating a likelihood function, followed by the
application of numerical optimization techniques for parameter estimation.
While MLE offers a principled approach, its computational intensity and the
significant manual intervention required limited its practicality to some extent.

In this context, another method emerged known as Conditional Sum
of Squares (CSS)(BOX; JENKINS, 1970), which gained prominence in the
early stages of ARIMA modeling. CSS estimation provided an alternative
technique that significantly simplified the estimation process compared to
MLE. CSS involves sequentially considering each parameter, thereby reducing
the computational complexity inherent in the estimation process.

Moreover, to further enhance the estimation process, alternative methods
came to the forefront. Notably, the utilization of Yule-Walker equations became
a pivotal element in ARIMA model estimation. These equations introduced a
systematic framework for the estimation of Autoregressive (AR) components,
relying on autocorrelation functions derived from the observed time series
data. By solving these equations, preliminary estimates for the AR terms were
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attained.
Therefore, during its initial phases, the ARIMA estimation process seam-

lessly integrated the foundational principles of the Box-Jenkins methodology
with the mathematical rigor inherent in Maximum Likelihood Estimation. This
approach presented a structured, data-driven framework for the modeling and
forecasting of time series data, particularly when seasonality represents a piv-
otal consideration. Despite the initial computational challenges associated with
MLE, subsequent developments, including the strategic application of Yule-
Walker equations, the Durbin-Levinson algorithm, and the adoption of CSS,
contributed significantly to the precision and efficiency of the estimation pro-
cess, particularly concerning the autoregressive components within ARIMA
models.

An alternative approach, grounded in the framework of State Space Mod-
els (SSM) as articulated by Harvey (HARVEY, 1990), represents a compelling
perspective in time series analysis. While conventional Autoregressive Inte-
grated Moving Average (ARIMA) models traditionally involve a stepwise pro-
cess of differencing to eliminate trend and seasonal components, aiming to
render the series stationary, the SSM approach dissects time series into sepa-
rate trend, seasonal, and irregular components.

A noteworthy revelation in this context is the recognition that ARIMA
models can be interpreted as a specific subset of State Space models (DURBIN;
KOOPMAN, 2012). The strength of this realization lies in the capacity of State
Space models to amalgamate these components within a unified framework.
As a result, State Space models enable the seamless integration of trend,
seasonality, and irregularity into a single, holistic representation, eliminating
the need for stepwise transformations.

What distinguishes the State Space framework is its incorporation
of advanced estimation techniques, including the Kalman filter(KALMAN,
1960), which renders adaptable and responsive to real-time data. Moreover,
State Space models facilitate retrospective analysis through smoothing algo-
rithms(JONG, 1989), allowing for the extraction of historical insights, a fea-
ture notably absent in ARIMA models. This convergence of modeling and
estimation within the State Space framework presents a powerful advantage
for a broad spectrum of applications, from economics and finance(ZENG; WU,
2013) to engineering and signal processing(SMITH; BROWN, 2003).

The specification of ARIMA models has also posed a persistent chal-
lenge for time series analysts. Originating from the foundational work of Box
and Jenkins, the intricacies of determining the autoregressive, seasonal au-
toregressive, moving average, and seasonal moving average orders, alongside



Chapter 2. Relevant Literature 19

both seasonal and non-seasonal integration orders, remain subjects of consider-
able disagreement within the methodological discourse. This complexity arises
from the imperative reliance on statistical tests and analytical tools, including
autocorrelation functions and partial autocorrelation functions, further con-
tributing to the intricacy of the model specification process.

Various endeavors have sought to address the intricacies associated with
ARIMA model specification. In 1982, Hannan and Rissanen(HANNAN; RIS-
SANEN, 1982) presented a methodology for determining the order of an Au-
toregressive Moving Average (ARMA) model, with a caveat that its applicabil-
ity was confined to stationary time series. Gomez (GÓMEZ, 1998) subsequently
expanded the Hannan-Rissanen method to encompass multiplicative ARIMA
models.

Liu (LIU, 1989) contributed to the field by proposing a method for iden-
tifying seasonal Autoregressive Integrated Moving Average (ARIMA) models,
leveraging a filtering approach alongside heuristic rules. Additionally, propri-
etary algorithms employed by commercial software have been instrumental
in ARIMA specification, albeit lacking detailed documentation in the public
domain literature. Ord and Lowe (ORD; LOWE, 1996) conducted a compre-
hensive review of the implementation of automatic ARIMA specification in
various commercial software packages, including AutoBox 3.0, AUTOCAST
II, FORECAST PRO, NCSS, and 4CAST/2.

Notably, Forecast Pro (GOODRICH, 2000) has gained prominence for its
adept automatic ARIMA algorithm, notably employed in the M3-forecasting
competition (MAKRIDAKIS; HIBON, 2000), further emphasizing the signifi-
cance of automated methodologies in enhancing the efficiency and accuracy of
ARIMA model specification.

Preeminently employed in the field, the method put forth by Hyndman
and Khandakar (HYNDMAN; KHANDAKAR, 2008) stands as a prominent
approach for ARIMA model specification. This method relies on statistical
tests, specifically the Canova-Hansen test (CANOVA; HANSEN, 1995) for
seasonality and the KPSS test (KWIATKOWSKI et al., 1992) for non-
seasonality, to ascertain the appropriate integration orders. The determination
of other hyperparameters involves a systematic stepwise exploration across
the model space, with the overarching objective of minimizing the Akaike
Information Criterion (AIC). Crucially, this methodology rigorously excludes
model specifications that contravene the fundamental properties of causality
and invertibility, ensuring the coherence and validity of the resulting ARIMA
models.

In spite of the existing challenges, the ARIMA model is widely used and
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is pervasive across open-source libraries in diverse programming languages. No-
tably, the R language (R Core Team, 2021) stands out for its influential imple-
mentation, distinguished by its original exposition of the Hyndman-Khandakar
method for the automatic specification of ARIMA hyperparameters. Given R’s
preeminence in the statistical community, the pmdarima library (SMITH et
al., 2017–) was conceived to deliver a robust adaptation of the R auto.forecast
method for the Python programming language (ROSSUM; DRAKE, 2009).

In Python, the StatsModels library (SEABOLD; PERKTOLD, 2010)
contributes yet another noteworthy implementation of ARIMA models, lever-
aging the State Space Models framework to enhance functionality and pre-
cision. Extending the scope, Julia (BEZANSON et al., 2017) emerges as an
additional significant programming language in this context. Renowned for its
powerful optimization packages, Julia supports advanced optimization tech-
niques in the field of time series analysis. Of particular relevance is the StateS-
paceModels.jl package (SAAVEDRA; BODIN; SOUTO, 2019), which utilizes
Julia’s optimization frameworks to implement state space models. Within
this package, an implementation of the ARIMA model and the Hyndman-
Khandakar method for automatic specification further enriches the landscape
of time series modeling. This multilingual array of ARIMA implementations
underscores the versatility and adaptability of the model across different pro-
gramming environments, catering to the diverse needs of practitioners and
researchers in the field.

2.2
Recent Literature and applications

One important factor to acknowledge, as mentioned by Robert Hyndman
in his comments on the M3 competition, is that "there is virtually no improve-
ment in forecasting accuracy using ARIMA models (labeled B-J automatic).
This is interesting, but has been widely known since at least the time of the
first M-competition" (HYNDMAN, 2001). Although it is reassuring that pre-
vious findings continue to hold, it is concerning that knowledge about these
models has not significantly advanced in recent years. This statement, made
in 2001, reflects a scenario that has seemingly remained static.

ARIMA models remain a powerful tool for time series modeling and
forecasting and continue to be relevant across various fields. For instance, in
epidemiology, ARIMA models have been used to predict the number of Dengue
cases with great precision (MARTINEZ; SILVA; FABBRO, 2011). Another
application in epidemiology can be found in (NOBRE et al., 2001), where
ARIMA models are compared with Dynamic Linear Models for estimating the
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occurrence of two notifiable diseases.
ARIMA models are also extensively used in meteorology. Forecasting the

mean temperature of a specific region is crucial for various activities, such as
agriculture and energy consumption. For instance, a study by Chen (2018)
utilizes ARIMA models to analyze the monthly mean temperature in Nanjing,
China, from 1951 to 2017 (CHEN et al., 2018). Another application involves
forecasting runoffs, which can inform actions to mitigate the effects of such
events. A long-term study using ARIMA and SARIMA models analyzed this
phenomenon in the United States (VALIPOUR, 2015). Additionally, SARIMA
models are employed to forecast monthly, weekly, and daily monsoon rainfall
time series (DABRAL; MURRY, 2017). These forecasts are critical for water
resource management, irrigation scheduling, agricultural management, and
reservoir operation. The article by Dabral et al. also compares SARIMA
models with other techniques such as Artificial Neural Networks (ANN) and
Fuzzy techniques, highlighting the advantages of SARIMA models in terms of
interpretability and ease of modeling.

In the field of economics, ARIMA models are widely used due to their
ability to forecast commodities, which is crucial for predicting the economic
performance of many nations. For instance, a study by Divisekara et al.
(2020) utilized SARIMA models to predict the price of lentils in Canada
(DIVISEKARA; JAYASINGHE; KUMARI, 2020). Another application can
be found in the forecasting of sugarcane production in India (KUMAR;
ANAND, 2014). However, it is important to note that some economic time
series, particularly those with high volatility, may not be suitable for ARIMA
modeling (PETRICĂ; STANCU; TINDECHE, 2016). Despite this limitation,
many aggregated economic series with relatively low sampling frequencies can
be approximated by an ARIMA(0,1,1) process. This is demonstrated in a
study that highlights the importance of ARIMA models in the economic field
(ROSSANA; SEATER, 1995).

In the energy field, time series forecasts are crucial for the planning
of energy production, the use of resources such as water in reservoirs, the
expansion of transmission lines, and the installation of new power plants. For
instance, a study by (VAGROPOULOS et al., 2016) compares four practical
methods for electricity generation forecasting of grid-connected photovoltaic
(PV) plants: SARIMA modeling, SARIMAX modeling (SARIMA with an
exogenous factor), modified SARIMA modeling, and ANN-based modeling.
These models were applied to the intraday forecast of a PV plant in Greece
using real-world data. Another study (ATIQUE et al., 2019) applies ARIMA
models to forecast total daily solar energy generation, which is vital for energy
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generation planning due to the intraday seasonality of solar generation. This
seasonality can cause difficulties in meeting demand due to timing imbalances
between peak demand and solar power generation. Additionally, (de Oliveira;
Cyrino Oliveira, 2018) uses bagging ARIMA and other methods for mid-
to long-term electric energy consumption forecasting, achieving substantial
improvements in the forecast accuracy of energy demand for end-use services
in both developed and developing countries.

Finally, one of the primary current uses of ARIMA models is as a bench-
mark for new models, particularly machine learning models, due to their high
performance in time series modeling and forecasting. For instance, (SIAMI-
NAMINI; NAMIN, 2018) uses ARIMA models as a benchmark for LSTM
(Long Short-Term Memory) neural networks in economic and financial time
series. Another study by (HEWAMALAGE; BERGMEIR; BANDARA, 2021)
compares ARIMA with a new type of neural network, Recurrent Neural Net-
works (RNN), which have become competitive forecasting methods, as notably
shown in the winning method of the recent M4 competition (MAKRIDAKIS;
SPILIOTIS; ASSIMAKOPOULOS, 2020). Furthermore, (NING; KAZEMI;
TAHMASEBI, 2022) compared ARIMA, LSTM, and Prophet (TAYLOR;
LETHAM, 2018) models for oil production forecasting and found that both
ARIMA and LSTM performed better than Prophet, with ARIMA demon-
strating robustness in predicting the oil rate of wells across unconventional
reservoirs.

Hybrid approaches that leverage the strengths of both ARIMA models
and machine learning techniques have also been explored. For example, (de
O. Santos Júnior; de Oliveira; de Mattos Neto, 2019) proposes an intelligent
hybridization of ARIMA models, Multi-Layer Perceptron (MLP), and Support
Vector Regression (SVR). This new methodology was applied to six well-known
real-world complex time series, achieving better performance than single and
other hybrid models. Similarly, (PHAN; NGUYEN, 2020) proposed a hybrid
approach that combines ARIMA models with statistical machine learning
methods, applying the model to forecast the water level of the Red River.

In summary, ARIMA and SARIMA models continue to be invaluable
tools across various fields for time series modeling and forecasting. Despite the
observation by Robert Hyndman that there has been little improvement in
forecasting accuracy with ARIMA models since the first M-competition, their
relevance and application remain significant.



3
Theoretical Background

3.1
Autoregressive models

The autoregressive (AR) term in time series modeling aims to express
the current value of the series, denoted as yt, as a linear combination of its
previous k observations. This means that to express the current value, the
model uses a weighted sum of the past k values of the series.

In simpler terms, an AR model expresses the current value based on a
combination of its past values, where the number of past values used is k. This
approach helps to capture the pattern and dependencies in the time series data
over time.

Mathematically, this can be represented as:

yt = c + ϕ1yt−1 + ϕ2yt−2 + · · · + ϕkyt−k + ϵt (3-1)

Here’s the revised paragraph with the coefficients ϕi mentioned first,
followed by the definition of Φ:

In this context, ϕi are the coefficients associated with the autoregressive
terms, and the vector of these coefficients will be represented as Φ. Addition-
ally, c represents the intercept, and ϵt denotes the error term. In an autoregres-
sive (AR) model, the objective is to determine the values of these coefficients
that minimize the in-sample error. This is specifically achieved by minimizing
the sum of squared errors (SSE), represented as:

f(Φ) = ϵ2
t = (yt − c −

p∑
i=1

ϕiyt−i)2 (3-2)

The function f(Φ) is quadratic and convex, allowing for the estimation of
the optimal coefficients through minimization. This process, known as ordinary
least squares (OLS) estimation, identifies the coefficients that minimize the
SSE, thereby providing the best fit for the model.

One important property that sometimes is enforced in AR models, is that
the characteristic polynomial, formed by the model’s coefficients, needs to be
stationary. The polynomial is described as
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P(p) = 1 −
p∑

i=1
ϕiz

i (3-3)

If all the inverse roots of the polynomial lie inside the unit circle, the
model is considered stationary. This property is crucial for ensuring that the
model does not diverge. A stationary model can be represented by its past
errors, depending on the coefficients.

3.2
Maximum Likelihood estimation

Another prevalent formulation of Autoregressive (AR) models involves
maximizing the likelihood function. It can be demonstrated that maximizing
the likelihood of a model is equivalent to minimizing squared errors. Consider a
fundamental linear regression model. The likelihood function for an AR model
with normally distributed errors is given by:

L(c, Φ, σ2|y) = 1
(2πσ2)n/2 exp

− 1
2σ2

n∑
i=1

(yi − c −
p∑

j=1
ϕjyi−j)2


Here, σ2 represents the variance of the errors, and it is assumed that the

mean of the errors is 0. Under these assumptions, the log-likelihood function
can be expressed as:

ℓ(c, Φ, σ2|y) = −n

2 log(2πσ2) − 1
2σ2

n∑
i=1

(yi − c −
p∑

j=1
ϕjyi−j)2

Maximizing the likelihood is equivalent to maximizing the log-likelihood.
To simplify the optimization problem, it is customary to minimize the negative
log-likelihood. Consequently, the problem transforms into:

minimize
c,Φ,σ2

− ℓ(β, σ2|y)

Now, focus on the term ∑n
i=1(yi − c −∑p

j=1 ϕjyi−j)2, since the rest can be
considered a constant and therefore disregarded from the optimization. This
term is proportional to the sum of squared errors (SSE) in linear regression.
Therefore, minimizing the negative log-likelihood is equivalent to minimizing
the sum of squared errors. This relationship holds for models with normally
distributed errors, extending to AR models.
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3.3
Moving average models

The Moving Average (MA) models instead of expressing the current term
y′

t as a linear combination of the k past terms, it endeavors to elucidate the
current term as a linear combination of the k preceding forecast errors ϵt−k:

y′
t = c +

q∑
i=1

θiϵt−i + ϵt (3-4)

Here, Θ represents a vector of coefficients θi associated with the past
errors, and ϵt denotes the error term. Unlike Autoregressive (AR) models
that employ past observations of the time series, MA models utilize previous
forecast errors, necessitating simultaneous estimation of both coefficients and
errors.

This makes the use of OLS estimation infeasible, leading to the adoption
of nonlinear least squares. However, this entails a trade-off, with the loss
of some desirable properties, such as global optimality. So, the estimated
coefficients do not have the guarantee that they are the best ones possible,
at least using the standard estimation techniques discussed in 2.1.

An important property of MA models is called invertibility. A MA(q)
model is called invertible if it can be written as an AR(∞). This property is
desirable once the error at a certain time can be expressed by a linear function
of the model’s present and past observations. This enables the computation of
confidence intervals for ARIMA prediction.

3.4
Autoregressive Integrated Moving Average models

Autoregressive Integrated Moving Average (ARIMA) models combine
autoregressive and moving average components with an additional integration
component to model and forecast time series data.The integration term refers
to the number of differencing steps needed to make the series stationary,
addressing the model’s requirement for stationarity. Thus, the integration term
represents the differencing necessary to achieve a stationary series.

ARIMA models are typically denoted as ARIMA(p,d,q), where p repre-
sents the degree of the autoregressive component, d the degree of differencing
(integration), and q the degree of the moving average component. Since the
original series is differenced, it is represented as y′

t in the model’s notation.
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y′
t = c +

p∑
i=1

ϕiy
′
t−i +

q∑
i=1

θiϵt−i + ϵt (3-5)

The inclusion of the Moving Average (MA) component in ARIMA models
introduces significant estimation challenges, as standard methods do not ensure
optimality. Two principal methods for estimating these models are detailed in
Section 2.1. The most prominent approach employs the State Space Models
framework for estimation.

3.5
Seasonal Autoregressive Integrated Moving Average models

The Seasonal Autoregressive Integrated Moving Average (SARIMA)
models extend ARIMA models to accommodate time series with seasonal
patterns. ARIMA models, exemplified by ARIMA(p,d,q), are not sparse; the
number of parameters to be estimated, excluding the intercept, equals p + q.
Consequently, higher AR and MA orders increase the number of parameters,
making the estimation process more prone to numerical instability.

In many monthly time series, data from the same month in different
years exhibit relationships, suggesting the need for an AR model of order 12 to
capture this seasonal pattern. To avoid estimating all 12 coefficients, SARIMA
models incorporate seasonal autoregressive and moving average components.
The mathematical formulation of SARIMA models is expressed as:

y′
t = c +

p∑
i=1

ϕiy
′
t−i +

q∑
i=1

θiϵt−i +
P∑

i=1
Φiy

′
t−si +

Q∑
i=1

Θiϵt−si + ϵt (3-6)

Here, Φi are the coefficients of the seasonal AR process, Θi are the
coefficients of the seasonal moving average process, and s is the seasonal period.
The estimation process for SARIMA models remains consistent with that of
ARIMA models.

3.6
Hyndman-Khandakar algorithm for ARIMA specification

The Hyndman-Khandakar algorithm, proposed by Hyndman and Khan-
dakar, uses the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test to determine
the differencing parameter (d) in ARIMA model specification. The algorithm
begins by testing four candidate models: ARIMA(0, d, 0), ARIMA(2, d, 2),
ARIMA(0, d, 1), and ARIMA(1, d, 0). For these models, a constant term is
considered unless d ≥ 2. If d < 2, an additional model, ARIMA(0, d, 0) with-
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out a constant term, is also tested. The best model is selected based on the
corrected Akaike Information Criterion (AICc).

Once a model is chosen, it is tested to ensure it is both stationary and
invertible. If the model fails these tests, it is discarded, and the next best model,
according to the AICc criterion, is tested. This process continues until a model
that meets both the stationarity and invertibility conditions is found. The
algorithm then explores different variations by incrementing or decrementing
p and/or q by 1 and by including or excluding the constant term.

The process can be broken down into the following steps:

– The algorithm starts by testing four candidate models:

– ARIMA(0, d, 0)
– ARIMA(2, d, 2)
– ARIMA(0, d, 1)
– ARIMA(1, d, 0)

– For all these models, a constant term is considered unless d = 2.

– If d < 2, an additional model, ARIMA(0, d, 0) without a constant term,
is also tested.

– The best model is chosen based on the Akaike Information Criterion
corrected (AICc).

– The chosen model is then tested to ensure that it is both stationary and
invertible. If the model fails these tests, it is discarded, and the next best
model, according to the AICc criterion, is tested. This process continues
until a model that meets both the stationarity and invertibility conditions
is found.

– The algorithm then explores different variations of the chosen model by:

– Incrementing or decrementing p by 1.
– Incrementing or decrementing q by 1.
– Including or excluding the constant term.

This thorough examination helps find the optimal ARIMA model con-
figuration.

Figure 3.1, extracted from the "Forecasting: Principles and Practice"
book (HYNDMAN; ATHANASOPOULOS, 2021), illustrates iterations of the
Hyndman-Khandakar algorithm. The orders of the AR and MA components
at each step are depicted, with the best-performing model of each iteration
circled in black.
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Figure 3.1: An example of Hyndman-Khandakar algorithm iterations.

While the example above is illustrative, it underscores a major challenge
faced by the Hyndman-Khandakar algorithm—the high dimensionality of the
hyperparameters space. Figure 3.1 displays only the dimensions of AR and
MA, excluding differentiation and model constant for interpretability. The
figure emphasizes the algorithm’s exploration in a vast hyperparameters space,
which makes the specification process a large combinatorial problem.

The same logic can be applied to SARIMA models. When dealing
with SARIMA models, the process begins by determining the non-seasonal
integration order (d). Once the series has been differenced accordingly, the
Canova-Hansen test is applied to ascertain the seasonal integration order.
Subsequently, the procedure mirrors that of non-seasonal ARIMA models
but includes initial models with corresponding autoregressive orders for the
seasonal component. Additionally, the seasonal parameters (P and Q) are
varied independently of the non-seasonal parameters.



4
Proposed methodology

This chapter aims to elucidate the methodological contributions pre-
sented in this dissertation, comprising two distinct sections: Estimation and
Specification. The primary contribution of this work is the creation of an ab-
straction layer in the estimation and specification process of ARIMA models.
This abstraction dissociates the model formulation from the methods used
for its estimation and specification, allowing flexibility in model formulation
without increasing the complexity of the estimation and specification process.

4.1
Estimation under an optimization lens

This section systematically explores the complexities of modeling Au-
toregressive (AR) and Moving Average (MA) components, culminating in the
presentation of a new way of estimating ARIMA models. An essential consid-
eration is that, when considering ARIMA models, the differentiation of the
original time series is conducted prior to the estimation process using tradi-
tional statistical tests to determine the integration orders. Hence, the model
assumes that the inputted time series are stationary and will be referred to as
y′.

4.1.1
Autoregressive (AR) Modeling

Considering the formulation presented in Equation 3-1 in Section 3.1, the
estimation process of autoregressive (AR) models can be expressed using the
optimization framework as follows:

minimize
c,Φ,ϵt

T∑
t=1

ϵ2
t (4-1)

subject to y′
t = c +

p∑
i=1

ϕiy
′
t−i + ϵt, ∀t ∈ 1, · · · , T (4-2)

This formulation explicitly outlines the objective of minimizing squared
errors within the dynamic constraints of the AR model, as expressed in
Equation 4-2. In this formulation, the c, Φ and ϵ are variables that the
optimization model aim to find the optimal values.
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Notably, for an AR(p) model, where p denotes the number of preceding
observations utilized, the initial p values of the time series are treated as the
initial values of the model.

4.1.2
Moving Average (MA) Modeling

Considering the formulation presented in Equation 3-4 in Section 3.3, the
estimation process of autoregressive (MA) models can be expressed using the
optimization framework as follows:

minimize
c,Θ,ϵt

T∑
t=1

ϵ2
t (4-3)

subject to y′
t = c +

q∑
i=1

θiϵt−i + ϵt, ∀t ∈ 1, · · · , T (4-4)

In this formulation, the c, Θ and ϵ are variables that the optimization
model aim to find the optimal values. While the objective function remains
consistent, the constraint introduces a product of variables (θi and ϵi), inducing
nonlinearity. Despite this, a wide range of optimization methods can provide
estimations for these parameters with desired properties. Some optimization
techniques present in Alpine optimizer (KIM; RICHARD; TAWARMALANI,
) can deal with this non-linearity and guarantee global optimality.

An alternative modeling approach involves the following function:

f(Θ) = minimize
c,ϵt

T∑
t=1

ϵ2
t (4-5)

subject to y′
t = c +

q∑
i=1

θiϵt−i + ϵt, ∀t ∈ 1, · · · , T (4-6)

The f function accepts a vector of θi coefficients, Θ, and returns the
Sum of Squared Errors (SSE) of the MA model using these coefficients.
In f , the nonlinearity is absent, ensuring it yields the minimum SSE for
the given coefficients. Utilizing a black-box optimization method enables the
optimization of f to obtain coefficients that minimize the SSE of the function
without the guarantee of global optimality.
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4.1.3
ARIMA Modeling

Considering the previous formulations of both AR and MA models, this
formulation of the ARIMA model aims to reproduce the dynamic of the model
in the context of an optimization problem.

minimize
c,Φ,Θ,ϵt

T∑
t=1

ϵ2
t (4-7)

subject to y′
t = c +

p∑
i=1

ϕiy
′
t−i +

q∑
i=1

θiϵt−i + ϵt, ∀t ∈ 1, · · · , T (4-8)

This formulation presupposes stationarity in the series, denoted by
y′, implying that both seasonal and non-seasonal differentiations have been
previously conducted. That means that the integration order is determined
before the estimation process.

The dynamic representation of the model is articulated in Equation
4-8. Within this equation, the term ∑p

i=1 ϕiy
′
t−i signifies the autoregressive

component, while the term ∑q
i=1 θiϵt−i denotes the moving average component.

It is crucial to underscore that in this context, the term ϵt represents the
error at time t, embodying the difference between the observed value and the
model’s estimation.

It is imperative to notice that the vector ϵ is regarded as a variable
within the optimization model. This innovation constitutes a distinctive feature
of the proposed formulation, deviating from conventional ARIMA estimation
methods that handle past errors recursively. In this approach, the optimization
model concurrently estimates the errors alongside other model parameters.
The overarching objective, defined by the minimization of the sum of squared
errors, motivates the model to seek parameter values that not only capture the
dynamics of the time series but also minimize the residuals, specifically ϵt.

This formulation introduces non-linearity into the dynamic constraint
outlined in Equation 4-8. This non-linearity arises from the product between
the θ coefficients and the ϵ variables. Consequently, certain desirable optimiza-
tion properties, such as a global minimum, can be forfeited. However, it is
crucial to note that this non-linear characteristic aligns with prevailing prac-
tices, as estimations from other packages also lack these particular properties.
In this context, the non-linearity remains a valid and accepted feature of the
formulation, as it does not deviate from established norms within the field of
ARIMA modeling.
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4.1.4
Alternative Approach to Address Non-Linearity

In order to address the non-linearity inherent in the preceding ARIMA
formulation, the idea used in 4.1.2. To achieve this, the introduction of the
function f is imperative, defined as follows:

f(Θ) = minimize
ϕt,ϵt

T∑
t=1

ϵ2
t (4-9)

subject to y′
t = c +

p∑
i=1

ϕiy
′
t−i +

q∑
i=1

θiϵt−i + ϵt, ∀t ∈ {1, · · · , T}

(4-10)

It is evident that the non-linearity no longer prevails, as the Θ coefficients
are now parameters of the function and not variables within the optimization
problem. Furthermore, with the specification of the coefficient vector,Θ, the
estimation of the remaining parameters achieves optimality, transforming the
problem into a linear form.

To optimize the moving average coefficients, a non-linear black box
algorithm is employed with the objective of minimizing the output from f(Θ),
specifically in this case, the sum of squared errors (SSE).

minimize
Θ

f(Θ) (4-11)

This approach facilitates the meticulous adjustment of parameters, ensur-
ing an optimal fit to the time series data given the moving average coefficients.

4.1.5
Adding Exogenous Variables

The incorporation of exogenous variables into the ARIMA model is a
straightforward process using the optimization framework. Let Xt×m denote
the matrix containing the exogenous variables as its m columns. It is imperative
to note that all explanatory variables must be stationary to adhere to the
assumptions of the ARIMA model. Let β represent the vector of coefficients
of the explanatory variables. Thus, the model can be formulated as follows:



Chapter 4. Proposed methodology 33

minimize
c,Φ,Θ,β,ϵt

T∑
t=1

ϵ2
t (4-12)

subject to y′
t = c +

m∑
i=1

βiX
′
ti +

p∑
i=1

ϕiy
′
t−i +

q∑
i=1

θiϵt−i + ϵt, ∀t ∈ {1, · · · , T}

(4-13)

The inclusion of the exogenous variables, represented by X and β,
enhances the model’s explanatory power by accounting for additional external
factors.

4.1.6
SARIMA Modeling

Extending ARIMA models to handle time series with seasonal patterns,
known as seasonal ARIMA (SARIMA), can also be tackled using optimization
techniques. This setup involves adding a seasonal autoregressive component,
where autoregressive terms are multiples of the seasonal length, along with a
seasonal moving average component that follows the same pattern.

minimize
c,ϕi,θi,Φi,Θi,ϵt

T∑
t=1

ϵ2
t (4-14)

subject to y′
t = c +

p∑
i=1

ϕiy
′
t−i +

q∑
i=1

θiϵt−i

+
P∑

i=1
Φiy

′
t−si +

Q∑
i=1

Θiϵ
′
t−si + ϵt, ∀t ∈ {1, · · · , T} (4-15)

It is important to note that although the methodology creates distinct
components to address the seasonal pattern, the tests to ensure the estimated
coefficients meet stationarity and invertibility requirements should consider the
AR and MA coefficients as a whole. This includes setting the lags not modeled
between the non-seasonal and seasonal components to zero.

4.2
Specification under an optimization lens

As elucidated in Section 2.1, the process of specifying ARIMA models
has garnered significant attention from researchers over the years. A primary
challenge arises from its reliance on the outcomes and interpretation of
statistical tests, introducing variability in model specifications. Consequently,
there exists a critical gap in the literature — a lack of a methodology capable
of deriving an optimal specification.
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Another impediment in the specification phase is the inherent lack of
sparsity in models. This issue primarily stems from constraints imposed by
conventional ARIMA model estimation techniques, limitations that are cir-
cumvented by the optimization-based formulation presented in Section 4.1.
For example, when specifying an AR(5) model, it implies the obligatory esti-
mation of all the first five autoregressive coefficients. This condition dictates
that higher AR orders lead to less sparse models. Recognizing this limitation,
SARIMA models segregate seasonal and non-seasonal components, offering a
marginally more sparse model compared to modeling with a high-order autore-
gressive component. Consequently, existing specification methods encounter
challenges in modeling sparse ARIMA structures.

This section will underscore that the prevalent algorithm for ARIMA
model specification, described in 3.6, relies on local search within the hyperpa-
rameter space where each greedy choice in an iteration lacks proven optimality.

Moreover, the methodology confines its search to hyperparameters that
do not allow for the selection of sparse autoregressive and moving average
components. This limitation results in a reduced hyperparameters space,
overlooking the potential for sparse model configurations.

4.2.1
Another way of formulating ARIMA models

The content presented in this subsection and the subsequent subsection
has been excerpted from a research paper developed as part of the master’s
program (DUARTE et al., 2023). The paper comprehensively discusses the pro-
posed methodology and provides a comparative analysis against the Hyndman-
Khandakar algorithm.

Consider the autoregressive formulation of type, where ∆y represents the
first different of series y,

∆yt = α + βt + γyt−1 +
p−1∑
i=1

ϕi∆yt−i + ϵt, (4-16)

as in the Augmented Dickey-Fuller (ADF) test (DICKEY; FULLER, 1979).
Note that this is a regression model encompassing various components, includ-
ing an intercept term α, a trend component βt, a differencing component γyt−1,
an autoregressive component ∑p−1

i=1 ϕi∆yt−i, and an error term ϵt. Notably, the
differencing component plays a crucial role in determining whether the original
series or the differenced series is being modeled. This behavior is governed by
the coefficient γ.
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yt − yt−1 = α + βt + γyt−1 +
p−1∑
i=1

ϕi(yt−i − yt−i−1) + ϵt (4-17)

yt = α + βt + (1 + γ)yt−1 +
p−1∑
i=1

ϕiyt−i −
p−1∑
i=1

ϕiyt−i−1 + ϵt (4-18)

yt = α + βt + (1 + γ + ϕ1)yt−1 +
p−1∑
j=2

(ϕj − ϕj−1)yt−j − ϕp−1yt−p + ϵt (4-19)

When γ is zero, it indicates that the differenced series is being modelled.
If γ is different from zero, it is possible to show that (4-16) can be reformulated
into a traditional autoregressive model

yt = α + βt +
p−1∑
j=1

θjyt−j + εt.

Hence, by utilizing this formulation, it becomes feasible to estimate a
regression model that incorporates differencing of the series and incorporates
an autoregressive component akin to the ARIMA approach. It is worth noting
that the MA component was omitted because it introduces a non-linearity in
the model and the primary focus is to achieve optimality.

4.2.2
Optimal SARI specification

The formulation presented below is derived from the Augmented Dickey-
Fuller (ADF) test, with a limitation of allowing only one automatic differencing
order.

minimize
α,β,ϵt,γ,ϕ

T∑
t=1

ϵ2
t (4-20)

subject to ∆yt = α + βt + γyt−1 +
p∑

i=1
ϕi · ∆yt−i + ϵt, ∀t ∈ T (4-21)

||Ψ||0 ≤ K, where Ψ = {α, β, γ, Φ} (4-22)

The proposed formulation aims to minimize the sum of squared residuals
while adhering to the dynamic nature of the model described in equation 4-
21. An additional constraint is introduced to promote desirable sparsity in the
model by imposing a limit on the 0-norm of the parameter vector Ψ, controlled
by the hyperparameter K. For a more theoretical explanation of introducing
L0 regularization, refer to section 5.2.

Given the objective of estimating a fixed number of non-zero coefficients
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(denoted as K) from a larger set of possibilities, the formulation proposed
above can be written using an integer optimization approach. This approach
allows the control of the number of non-zero coefficients through the hyper-
parameter named K. Consequently, the optimization model that focuses on
capturing and estimating the K most relevant coefficients can be described as

minimize
α,β,γ,ϕ,Iϕ,Iγ

T∑
t=1

ϵ2
t (4-23)

subject to ∆yt = α + βt + γyt−1 +
p∑

i=1
ϕi · ∆yt−i + ϵt, ∀t ∈ T (4-24)

− MIϕi ≤ ϕi ≤ MIϕi , ∀i ∈ {1, . . . , p} (4-25)

− MIγ ≤ γ ≤ MIγ (4-26)

− MIα ≤ α ≤ MIα (4-27)

− MIβ ≤ β ≤ MIβ (4-28)

Iα + Iβ + Iγ +
p∑

i=1
Iϕ

i ≤ K, (4-29)

where Iϕ = {Iϕt | t = i ∈ {1, . . . , p}} and M is a large number.
The vector Iϕ and the variables Iγ, Iα, Iβ in (4-25)–(4-29) are binary

variables. Iϕ is a binary variable vector that takes the value 0 when a coefficient
is not considered (assumes zero value) and takes the value 1 when it is
considered for non-zero estimation. Since this constraint(4-25) allows the model
to disconsider some lags, the interpretation of the parameter p has changed
from the number of previous lags used, to the range in which the lags can be
selected. Thus, it is easy to notice that the family of autoregressive models
considered by this formulation is significantly bigger than the one used by the
traditional methods, which is a subset of it.

The values of the binary variables Iγ, Iα, Iβ are also controlled by the
model constraint in (4-29).

It is worth noting that when γ is equal to 0, the model is representing
the first-order differenced series (∆y). As such, this methodology does not rely
on statistical tests to determine whether differencing is necessary for the time
series. Instead, the model estimates it as a parameter.

Given that the model selects only K parameters, an extension of this
approach allows for the consideration of seasonality by using a value of p greater
than the seasonal period. Let p′ be the number of autoregressive lags considered
in this approach, and let’s assume a yearly seasonality. It can be observed that
if p′ ≥ 12, the model could select lags 1 and 12, which is equivalent to choosing
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p = 1 and P = 1 in the standard SARIMA approach. However, this extension
does not include seasonal differentiation. This flexibility demonstrates that the
traditional approach of modeling the autoregressive part is a subcase of the
proposed approach.

Another important aspect of the proposed formulation is the use of the
K as the only hyperparameter, which is one of its biggest strengths. Since it
reduces the amount of hyperparameters of the traditional ones while enabling
a wider range of models to specify.

Thus, a fundamental challenge in the proposed formulation is determin-
ing the optimal number of non-zero coefficients. To address this, a straightfor-
ward methodology has been developed based on the AICc (Akaike information
criterion corrected). In this study, the assumption is made that the residuals
of the estimated models are independent and normally distributed. This as-
sumption allows for the approximation of the likelihood function using the
estimated variance of the residuals.

To determine the appropriate value of K, the value is incrementally
increased and the AICc values of the new models are compared with the
previous ones. If the AICc value of the new model is smaller, indicating a
better fit, the value of K is further increased. However, if the AICc value
increases, the process is stopped and the previous model is considered as the
final result.

4.3
An example using SARIMAX.jl

This chapter aims to offer the reader a succinct introduction to the
SARIMAX.jl package, leveraging the Air Passengers dataset to showcase the
package’s efficacy and user-friendly design.
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Figure 4.1: Air passengers time series in log scale.

The series depicted in Figure 4.1 has been transformed into a logarith-
mic scale, a necessary step to handle the escalating variance. The ensuing
code snippet exemplifies the straightforward process of crafting a SARIMA
model using the SARIMAX.jl package. Notably, the showcased model is a
SARIMA(2,0,2)(0,1,2) with a seasonal length of 12 observations. Furthermore,
users have the option to include both the constant and drift components, un-
derscoring the package’s flexibility and ease of use.

Code 1: Initialization

1 y = loadDataset ( AIR_PASSENGERS )

2 y_log = log .(y)

3 modelo = SARIMA (

4 y_log ,

5 2, 0, 2;

6 seasonality =12,

7 P=0, D=1, Q=2,

8 allowMean =false ,

9 allowDrift =true

10 )

The next step is to fit the model. This is the stage where the package dis-
tinguishes itself. Firstly, the default solver is Ipopt.jl (WäCHTER; BIEGLER,
2006), a non-linear solver based on the Interior Points method that yields opti-
mal solutions in linear optimization problems. Since SARIMAX.jl is structured
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using JuMP.jl (LUBIN et al., 2023), the solver can be easily changed, once it
is a parameter of the fit function, according to the user’s preferences while
conforming to the formulation’s properties. For instance, if the MA part is
being modeled, the solver must be capable of handling non-linear optimization
problems.

Secondly, the user can choose the formulation of the problem. Options
include the non-linear formulation with an objective function aiming to mini-
mize the sum of squared errors, the non-linear formulation with an objective
function aiming to maximize the likelihood, and the formulation in two stages
presented in Section 4.1.4. Additionally, users can choose to silence the output
of the solver or analyze the iterations.

Code 2: Fit

1 fit !( modelo ; objectiveFunction =" mse ")

The final step in the forecasting process involves utilizing the predict!
function to generate predictions for the time series. Additionally, the package
allows for the simulation of scenarios based on both the mean and the standard
deviation of the residuals.

Code 3: Predict and simulate

1 predict !( modelo ; stepsAhead =24, displayConfidenceIntervals =true)

2 simulated = simulate (modelo , 24, 250)

The results, depicted in Figure 4.2, demonstrate the forecast of the time
series and the confidence intervals of the forecast.

Figure 4.2: Fit in sample, forecast, and confidence intervals (97.5% and 2.5%)
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In Figure 4.3, it is possible to notice the forecast together with the
scenarios.

Figure 4.3: Forecast, and scenarios

Moreover, the package implements the auto function, uses the Hyndman-
Khandakar(HYNDMAN; KHANDAKAR, 2008) algorithm for the automatic
specification of ARIMA models with the estimation techniques of SARI-
MAX.jl. One advantage of combining both is that many models that have
numerical error in the estimation process in other packages can be estimated
using SARIMAX.jl, enhancing the algorithm’s performance.

Code 4: Auto

1 modelo = auto(y_log; seasonality = 12, assertStationarity =true)



5
Advancing the state of the art

As discussed in Chapter 4, the ARIMA model is now being formulated
within an optimization framework. This approach not only aims to enhance
the precision of model estimation but also provides increased flexibility that
was previously difficult to achieve. By framing the problem as an optimization
task, it becomes easier to incorporate various constraints, regularization tech-
niques, and advanced features, thus allowing users to choose the most suitable
optimization method for their specific needs. This shift represents a develop-
ment in time series modeling, offering the potential for more adaptable and
sophisticated model specifications.

5.1
Objective function

A pivotal aspect of this modeling framework is its inherent adaptability,
wherein the objective function of the model can be effortlessly modified with-
out influencing the essential structure of the estimation process. Notably, the
ubiquity of Least Squares estimation is attributed to its convex and differen-
tiable objective function, specifically the sum of squared errors. However, this
metric exhibits vulnerability to outliers, prompting the exploration of alter-
natives. An effective strategy for robustness against outliers involves replacing
the sum of squared errors with the sum of absolute errors.

minimize
c,ϕt,θtϵt

T∑
t=1

|ϵt| (5-1)

subject to y′
t = c +

p∑
i=1

ϕiy
′
t−i +

q∑
i=1

θiϵt−i + ϵt, ∀t ∈ 1, . . . , T (5-2)

This reformulation, utilizing the sum of absolute errors, transforms the
optimization problem into a linear convex model. Such adaptability ensures
the versatility of the ARIMA model, allowing for the incorporation of diverse
optimization objectives to better suit the characteristics of the time series data
under consideration.
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5.2
L0 regularization

In order to introduce L0 regularization, consider representing an ARIMA
model through a parameter vector denoted as Ψ = {ϕ, θ}. Unlike other formu-
lations, this approach lends itself to a concise expression through constraints,
providing a distinctive perspective on modeling sparsity within the framework.

minimize
c,ϕt,θtϵt

T∑
t=1

ϵ2
t (5-3)

subject to y′
t = c +

p∑
i=1

ϕiy
′
t−i +

q∑
i=1

θiϵt−i + ϵt, ∀t ∈ 1, . . . , T (5-4)

||Ψ||0 ≤ K (5-5)

Here, the optimization problem introduces a sparsity-inducing constraint,
where ||Ψ||0 represents the count of non-zero parameters in the vector Ψ,
and K signifies the predefined limit on the number of non-zero parameters.
This constraint promotes a parsimonious representation of the ARIMA model,
aligning with the principle of selecting a concise set of influential parameters
while effectively capturing the temporal dynamics of the time series.

5.3
L1 regularization

Within the realm of regularization techniques, the p-norm of a vector µ

is defined as

||µ||p =
(

T∑
i=1

|µi|p
) 1

lp

One of the prevalent regularization methods is the L1 regularization,
commonly known as Lasso (TIBSHIRANI, 1996). Particularly advantageous
in optimization models, the L1 regularization lends itself to a linear formulation
and also guarantees sparse and robust properties (XU; CARAMANIS; MAN-
NOR, 2010). Let Ψ = {ϕ, θ} represent the parameter vector. The inclusion of
Lasso regularization in the model is articulated as:
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minimize
c,ϕt,θt,ϵt

T∑
t=1

ϵ2
t (5-6)

subject to y′
t = c +

p∑
i=1

ϕiy
′
t−i +

q∑
i=1

θiϵt−i + ϵt, ∀t ∈ 1, . . . , T (5-7)
(

N∑
i=1

|Ψi|
)

≤ ρ (5-8)

Here, λ serves as a pre-specified parameter determining the extent of
regularization. The model is more commonly expressed in the Lagrangian
form, where the constraint 5-8 is introduced as a penalty term in the objective
function:

minimize
c,ϕt,θt,ϵt

T∑
t=1

ϵ2
t + λ

(
N∑

i=1
|Ψi|

)
(5-9)

subject to y′
t = c +

p∑
i=1

ϕiy
′
t−i +

q∑
i=1

θiϵt−i + ϵt, ∀t ∈ 1, . . . , T (5-10)

(5-11)

5.4
L2 regularization

Another widely adopted form of regularization is L2 regularization,
commonly referred to as Ridge regression. This regularization technique is
particularly useful when dealing with datasets exhibiting multicollinearity. The
prevalent and widely applied formulation of Ridge regression is expressed in
the Lagrangian form. In this formulation, a penalty term is introduced to the
objective function, resembling the one discussed in section 5.3.

minimize
c,ϕt,θt,ϵt

T∑
t=1

ϵ2
t + λ

√√√√( N∑
i=1

Ψ2
i

)
(5-12)

subject to y′
t = c +

p∑
i=1

ϕiy
′
t−i +

q∑
i=1

θiϵt−i + ϵt, ∀t ∈ 1, . . . , T (5-13)



6
Results

In this results chapter, the main goal is to substantiate certain claims
made in Chapter 4. The first claim suggests that modeling ARIMA as an
optimization problem to leverage various methodologies within the field is
beneficial for the accuracy of the estimation process. The second claim, an
extension of the first, posits that this approach enhances the stability and
robustness of the estimation process, reducing susceptibility to numerical issues
or divergence in estimation methods.

To validate this claims the proposed methodology was tested in two dif-
ferent experiments. The first aims to assess the model’s fit capacity. The second
experiment focused on the model’s prediction capacity by analyzing its per-
formance on M4 competition(MAKRIDAKIS; SPILIOTIS; ASSIMAKOPOU-
LOS, 2020) monthly series.

A third experiment detailed in this chapter was extracted from
(DUARTE et al., 2023) and demonstrate the performance of the proposed
specification method using monthly series of the M3 competition (MAKRI-
DAKIS; HIBON, 2000).

6.1
Estimation experiment

To investigate these claims, a controlled experiment was conducted. The
initial step involved generating a dataset comprising 1000 ARMA processes,
each with 100 observations, using Algorithm 1.

The generated dataset facilitated a comparative analysis of the in-sample
fit for five ARIMA implementations: statsmodels, pmdarima, StateSpaceMod-
els.jl, forecast (R language), and SARIMAX.jl (MSE objective function). Each
model was fitted utilizing the autoregressive and moving average orders spec-
ified in the time series process generator, incorporating all available observa-
tions. Various statistics, including AIC, AICc, BIC, Log likelihood, and MSE,
were extracted for each series. To ensure consistency in metric calculations
across different implementations and methods, a standardized procedure was
adopted. Different implementations and methods tend to diverge in some as-
pects of metric computation, making it essential to use a uniform approach for
accurate comparison. The coefficients estimated by statsmodels, pmdarima,
StateSpaceModels.jl, and forecast (R language) were used to create a model
using SARIMAX.jl with fixed coefficients. The model was then fitted, and the
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Algorithm 1: ARMA Process Generation
Initialize:

Set seed of 12345
ARMA Process Generation Loop (1000 iterations):

while #process < 1000 do
Randomly select orders p and q from [0, 5]
Generate random AR and MA coefficients from
the interval [-1.0, 1.0]
Check if AR process is stationary and MA is invertible
The check is made by the analysis of the roots of the
characteristic polynomial of both processes
if Stationary and Invertible then

Generate time series (y) using the generated coefficients
Store ARMA process, coefficients, and orders

end if
end while

metrics were extracted. Consequently, all models were compared based on the
metrics computed using the SARIMAX.jl framework.

Additionally, the occurrence of divergences or numerical errors during
the estimation process was recorded for each ARIMA implementation. Conse-
quently, for each series, the best model was determined based on each metric.
In instances where a model diverged, i.e a numeric error occurred during the
estimation process, no metric was stored, and an indication of an estimation
problem was recorded.

Table 6.1 demonstrates that SARIMAX.jl (using the MSE objective
function) had a superior performance than other models across all metrics,
except for computation time, supporting the initial hypothesis. The row
labeled "Tied Models" indicates the percentage of series where all models
performed equally. Furthermore, Table 6.2 reinforces these findings, showing
that SARIMAX.jl delivered superior results across all statistical measures,
confirming a difference in performance metrics compared to the other models.
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AIC BIC AICc
statsmodels, pmdarima 0.9 0.9 0.9
StateSpaceModels.jl 1.0 1.0 1.0
Rforecast 0.9 0.9 0.9
SARIMAX.jl (MSE) 89.1 89.1 89.1
Tied Models 8.0 8.0 8.0

MSE Log likelihood Time
statsmodels, pmdarima 0.8 0.7 0.0
StateSpaceModels.jl 0.8 0.9 20.7
Rforecast 1.2 1.2 64.1
SARIMAX.jl (MSE) 89.1 89.1 15.1
Tied Models 8.0 8.0 0.0

Table 6.1: Percentage of the cases the model was the best
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AIC
mean median min max

Statsmodels 13.261 9.716 -47.714 380.316
pmdarima 13.261 9.716 -47.714 380.316
StateSpaceModels.jl 13.533 9.112 -47.714 494.279
Rforecast 14.293 9.904 -47.714 395.883
Sarimax.jl 5.722 7.155 -118.463 61.913

BIC
mean median min max

Statsmodels 23.593 19.091 -45.109 403.763
pmdarima 23.593 19.091 -45.109 403.763
StateSpaceModels.jl 23.494 18.399 -45.109 512.515
Rforecast 24.945 19.579 -45.109 421.935
Sarimax.jl 16.054 17.110 -102.832 77.544

AICc
mean median min max

Statsmodels 13.762 10.135 -47.673 382.316
pmdarima 13.762 10.135 -47.673 382.316
StateSpaceModels.jl 14.003 9.508 -47.673 495.496
Rforecast 14.837 10.385 -47.673 398.355
Sarimax.jl 6.223 7.567 -117.559 62.816

MSE
mean median min max

Statsmodels 1.086 0.988 0.573 34.302
pmdarima 1.086 0.988 0.573 34.302
StateSpaceModels.jl 1.337 0.986 0.573 114.312
Rforecast 1.105 0.991 0.573 38.834
Sarimax.jl 0.966 0.966 0.228 1.667

Loglikelihood
mean median min max

Statsmodels -139.806 -138.479 -302.899 -108.453
pmdarima -139.806 -138.479 -302.899 -108.453
StateSpaceModels.jl -140.305 -138.542 -368.564 -108.454
Rforecast -140.134 -138.652 -308.844 -108.454
Sarimax.jl -136.164 -137.098 -165.762 -64.903

Table 6.2: Statistics of selected in sample metrics

Exploring more the time performance of the models, it is important to
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notice that the procedure adopted to measure this metric, was based on the
user’s perspective. So, the time measured is elapsed time in the fit function(or
equivalent functions), which is the time that a user would have to wait for the
model’s results to be calculated. This procedure tends to increase the time
computed, since these functions have some pre-processing of data to build the
entries for the solvers. In the case of SARIMAX.jl, it is known that the process
of building the optimization JuMP model is significant, so the time spent on
the solver is believed to be lower. In this metric, R forecast stood as the fastest
model, one of the reasons of such performance is the use of C language for the
estimation process, since C is known for its performance.

Mean Median Min Max
statsmodels 0.0861 0.0448 0.0057 0.7732
pmdarima 0.0880 0.0460 0.0058 0.9303
StateSpaceModels.jl 0.0369 0.0101 0.0003 0.7449
Rforecast 0.0098 0.0050 0.0010 0.1040
Sarimax.jl (MSE) 0.0188 0.0140 0.0034 0.8443

Table 6.3: Time statistics of the model’s estimation process and the SARI-
MAX.jl fit

Table 6.4 reveals a notable trend where SARIMAX.jl (MSE objective
function) exhibited no divergence in the estimation of any series, contrasting
with some packages that had divergence in the estimation process. This
observation lends support to the assertion that the optimization framework
enhances the robustness of the estimation process.

Model Divergence (%)
statsmodels 0.0
pmdarima 0.0
StateSpaceModels.jl 9.8
Rforecast 0.6
SARIMAX.jl (MSE) 0.0

Table 6.4: Percentage of the cases the model diverged.

Figure 6.5 depicts 4 examples of series (blue) with the specification of
the ARMA process that generates it and the SARIMAX.jl fit in sample (red).
In this series, both StateSpaceModels.jl and R forecast had problems in the
estimation process. It seems that all series present a seasonal pattern with
a high amplitude, which can be an explanation for the divergence in the
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estimation process, since this high amplitude can cause numerical instability.
It is important that the fit in sample produced by SARIMAX.jl is really tied
to the series data, which illustrates the model performance in this experiment.

Figure 6.1: ARMA(2,0) Figure 6.2: ARMA(4,0)

Figure 6.3: ARMA(5,0) Figure 6.4: ARMA(5,3)

Figure 6.5: Example of series that R forecast diverged and Sarimax fit

6.2
Forecast Results

To evaluate the performance of SARIMAX.jl in forecasting, an exper-
iment was designed utilizing the M4 competition dataset, which comprises
48,000 monthly time series. Due to the unknown underlying processes gener-
ating these series, the Hyndman-Khandakar algorithm (HYNDMAN; KHAN-
DAKAR, 2008) for ARIMA specification was employed, as implemented in R
forecast. It is important to note that this implementation differs slightly from
the original algorithm described in the paper. Despite using the same specifi-
cation, that considers seasonality and MA component, the chosen models for
each series may vary due to differences in the estimation process, which affects
the calculation of information criteria and model variance.

For benchmarking purposes, the R forecast auto.forecast model was
selected, as it was submitted in the M4 competition and demonstrated strong
performance on the monthly series. Also, the Naive method, that repeats the
last seasonal observation, was used to assert the models’ consistency. The
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forecast horizons were defined according to the M4 competition standards: the
short horizon covers the first 6 months, the medium horizon spans from months
7 to 12, and the long horizon ranges from months 13 to 18. Three metrics
were used for comparison: MASE, RMSE, and sMAPE. MASE and sMAPE
were employed in the M4 competition, while RMSE was included due to its
similarity to the SARIMAX.jl objective function. The following tables present
statistics for each metric, including mean, median, minimum, and maximum
values.

Table 6.5 provides the MASE statistics. It is notable that SARIMAX.jl
exhibited competitive performance compared to the R package across all
horizons. Particularly in the long horizon, the performance gap between the two
models is more pronounced, especially in the maximum values, which explains
the higher mean MASE in the total horizon. Additionally, the median MASE
for SARIMAX.jl is slightly higher, contributing to this observed difference.

MASE
mean median min max
Short Horizon

Naive 0.744 0.559 0.000 51.979
SARIMAX.jl 0.632 0.478 0.000 51.590
R Forecast 0.624 0.476 0.000 51.590

Medium Horizon
Naive 1.082 0.811 0.000 44.953
SARIMAX.jl 0.963 0.708 0.000 44.953
R Forecast 0.953 0.698 0.000 44.953

Long Horizon
Naive 1.364 1.021 0.000 73.572
SARIMAX.jl 1.229 0.891 0.000 73.572
R Forecast 1.211 0.873 0.000 73.540

Total
Naive 1.063 0.838 0.020 38.546
SARIMAX.jl 0.942 0.733 0.000 41.968
R Forecast 0.929 0.725 0.000 38.546

Table 6.5: Comparison of MASE for Different Models Across Horizons

Table 6.6 further demonstrates the competitiveness of SARIMAX.jl.
Unlike the MASE metrics, the maximum values of sMAPE for SARIMAX.jl
are actually lower than those for R forecast. However, the median behavior
remains consistent, indicating that while SARIMAX.jl can handle extreme
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cases better in terms of sMAPE, its overall distribution of errors is similar to
that of R forecast.

sMAPE
mean median min max

Short Horizon
Naive 11.050 4.777 0.000 188.324
SARIMAX.jl 9.785 4.116 0.000 171.435
R Forecast 9.590 4.116 0.000 184.856

Medium Horizon
Naive 14.448 7.414 0.000 189.961
SARIMAX.jl 13.897 6.801 0.000 200.000
R Forecast 13.581 6.715 0.000 200.000

Long Horizon
Naive 17.782 9.276 0.000 191.864
SARIMAX.jl 17.975 8.430 0.000 200.000
R Forecast 17.288 8.326 0.000 200.000

Total
Naive 14.427 7.791 0.103 190.050
SARIMAX.jl 13.886 7.061 0.000 188.625
R Forecast 13.486 7.030 0.000 194.952

Table 6.6: Comparison of sMAPE for Different Models Across Horizons

Table 6.7 presents a similar behavior to Table 6.6 concerning the maxi-
mum and median values. The difference between the median values from both
models is lower than in the other metrics, indicating the potential benefit of
the objective function used in the estimation process.



Chapter 6. Results 52

RMSE
mean median min max

Short Horizon
Naive 550.986 208.281 0.000 67622.675
SARIMAX.jl 481.870 174.734 0.000 67702.962
R Forecast 471.771 173.342 0.000 67702.962

Medium Horizon
Naive 710.911 293.602 0.000 65772.737
SARIMAX.jl 658.570 262.108 0.000 65772.737
R Forecast 647.552 259.986 0.000 69329.034

Long Horizon
Naive 848.428 369.264 0.000 46937.367
SARIMAX.jl 801.048 324.380 0.000 46046.949
R Forecast 783.271 319.177 0.000 46117.079

Total
Naive 750.327 329.521 1.532 39775.309
SARIMAX.jl 696.481 293.678 0.000 39394.129
R Forecast 682.509 288.122 0.000 40076.768

Table 6.7: Comparison of RMSE for Different Models Across Horizons

In conclusion, the comparative analysis of SARIMAX.jl and R forecast
across the MASE, sMAPE, and RMSE metrics demonstrates the competitive-
ness of SARIMAX.jl in forecasting performance. Specifically, while the maxi-
mum values of sMAPE for SARIMAX.jl were lower than those of R forecast,
the median values for both models showed consistent patterns across metrics.
The RMSE results further highlight the advantage of SARIMAX.jl’s objec-
tive function in the estimation process, as evidenced by the relatively smaller
differences in median values. Despite some variations in maximum values, par-
ticularly in the long horizon for MASE, SARIMAX.jl’s performance remains
robust and comparable to the established R forecast model. This reinforces
the potential of SARIMAX.jl as a reliable tool for time series forecasting in
various contexts.

6.3
Opt SARI Results

To evaluate the accuracy of the proposed specification model, it was com-
pared against the R language’s auto.forecast function (HYNDMAN; ATHANA-
SOPOULOS, 2021). The empirical study utilized 1428 monthly time series
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from the M3 competition, a dataset that encompasses a wide variety of time
series categorized into six different groups, as outlined in Table 6.8. The pro-
posed model was implemented using JuMP.jl (LUBIN et al., 2023), a math-
ematical programming framework in the Julia programming language. The
results of the experiment demonstrated that, under the same conditions, the
proposed model outperformed auto.forecast in cases where no MA component
was specified.

For each series in the dataset, the data was divided into a training set and
a test set. The last 24 observations were designated as the test set, while the
remaining data were utilized to fit three models: SARIMA and two versions of
the proposed model, referred to as Optimal SARI. Even though the proposed
model does not deal with the seasonal differentiation, it was adopted this name
to indicate the extension presented in the Section 4.2

Subsequently, each model was employed to generate forecasts for a 24-
step ahead horizon. The accuracy of the forecasts was evaluated using four
commonly used metrics: Mean Absolute Percentage Error (MAPE), Mean
Absolute Scaled Error (MASE), Mean Absolute Error (MAE), and Root Mean
Squared Error (RMSE). These metrics provided comprehensive measures of the
forecast error for each combination of model and series.

It is noteworthy that the MASE metric relies on a naive model as
a reference. To classify each series based on the presence or absence of
the seasonal component, a combination of two seasonal tests was employed.
Specifically, the p-value of the Kolmogorov-Smirnov (KS) test (KRUSKAL;
WALLIS, 1952) and the p-value of the qs test, a variant of the Ljung-Box test
(LJUNG; BOX, 1978), were utilized. If the p-value of the KS test is below
0.002 or the p-value of the qs test is below 0.01, the series was considered to
have a seasonal component. For seasonal series, the seasonal naive model was
utilized to compute the MASE metric, whereas for non-seasonal series, the
simple naive model was used.

Category Number of series Percentage
Demographic 111 7.77%

Finance 145 10.15%
Industry 334 23.40%
Macro 312 21.85%
Micro 474 33.19%
Other 52 3.64%
Total 1428 100%

Table 6.8: Number of time series in each category.
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Table 6.9 presents the percentage of series in which each model out-
performed the others. It can be observed that the SARIMA model exhibited
superior performance in at least 52.80% and 55.53% of the series, consider-
ing the quadratic and absolute error metrics, respectively. Additionally, Table
6.9 provides a comparison between the two versions of the proposed model.
It is evident that, across all metrics, the model employing the quadratic error
criterion achieved better forecast results in approximately 53% of the series.

Models MAPE MASE MAE RMSE
SARIMA 52.80% 58.47% 54.69% 55.11%

Auto ARIMA (quad. error) 47.20% 41.53% 45.31% 44.89%
SARIMA 55.53% 59.17% 55.88% 56.86%

Auto ARIMA (abs. error) 44.47% 40.83% 44.12% 43.14%
Auto ARIMA (quad. error) 53.50% 53.01% 53.01% 53.08%
Auto ARIMA (abs. error) 46.50% 46.99% 46.99% 46.92%

Table 6.9: Percentage of time series where a model showed a better forecast
result in each metric.

While the analysis presented in Table 6.9 suggests that the proposed
approach did not yield results comparable to SARIMA, it is important to note
that the table does not consider the magnitude of the differences between the
metrics associated with each model. Therefore, further analysis is necessary to
understand the significance of the performance differences observed.

In order to assess the magnitude of these differences, it is crucial to
compare the complete distributions of the error metrics. This comparison is
illustrated in Figure 6.6 using box plots. The box plots reveal a similar behavior
of the three methods for each of the four metrics, both in terms of median values
and variability. However, in terms of the prevalence of outliers, it is evident
that SARIMA tended to produce fewer upper outliers. It is worth noting that
a logarithmic scale was employed in the figure for the purpose of facilitating
the graphical analysis.

In addition to the insights gained from the graphical analysis, it is crucial
to employ statistical tests to assess the significance of the observed differences.
Due to the nature of the data, particularly the error metrics, the assumption
of normality cannot be justified. Consequently, a Wilcoxon test (WILCOXON,
1945), a non-parametric test that compares the location of two distributions,
was conducted. This test is commonly used as a median comparison test and
serves as a non-parametric alternative to the traditional t-test.
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Figure 6.6: Boxplots comparing the distribution of each error metric (in log
scale) for each model.

The bilateral version of the test was employed to compare the distribu-
tions of the three model combinations. Table 6.10 presents the results of each
test in terms of p-values. The analysis reveals no compelling evidence to reject
the null hypothesis of equality between the location of the distributions when
comparing the two versions of the proposed model. Conversely, when compar-
ing the proposed model to the SARIMA model using the MASE metric, there
is clear evidence of a significant difference at conventional levels of significance.
However, to reach the same conclusion for the other metrics, a significance level
of at least 10% is required for the quadratic error model, and at least 5% for
the absolute error model.

Models Compared MAPE MASE MAE RMSE
SARIMA vs Auto ARIMA
(quad. error)

0.0585 < 0.01 0.0514 0.0607

SARIMA vs Auto ARIMA
(abs. error)

0.0248 < 0.01 0.0286 0.0258

Auto ARIMA (quad. error)
vs Auto ARIMA (abs. error)

0.7290 0.4195 0.7996 0.7220

Table 6.10: P-value of the bilateral Wilcoxon test, for all three model combi-
nations.

Considering the dataset’s division into six distinct categories of time
series, it is crucial to evaluate the accuracy of the proposed models within each
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category, as time series within a category may possess unique characteristics.
To examine the potential impact of time series category on model accuracy,
separate analyses were conducted for each category, following the procedures
described earlier.

Table 6.11 presents the percentage of time series within each category
where a specific model yielded superior forecast results, indicated by a lower
error metric value. It is worth noting that since these percentages are comple-
mentary between the two models considered, the results for the first model in
each block are displayed. Upon examining Table 6.11, it becomes evident that
the proposed model with a quadratic error objective function outperformed
SARIMA in the Industry and Other categories across all metrics. Similarly,
the comparison between SARIMA and the proposed model with an absolute
error objective function revealed better accuracy for the latter in these two
categories, except for the MASE metric in the Industry category. Notably, the
results indicate that the two versions of the proposed model exhibited similar
performance, with percentages hovering around 50%, except for the industrial
category, where the model with a quadratic error objective function achieved
better results in approximately 58% of the time series.
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SARIMA vs Auto ARIMA (quadratic error)
Category MAPE MASE MAE RMSE
Demographic 60.36% 72.07% 62.16% 61.26%
Finance 53.10% 68.97% 53.34% 50.34%
Industry 46.40% 49.40% 45.81% 44.31%
Macro 58.33% 60.58% 56.09% 54.49%
Micro 53.38% 58.65% 59.92% 64.14%
Other 38.46% 44.23% 44.23% 46.15%

SARIMA vs Auto ARIMA (absolute error)
Category MAPE MASE MAE RMSE
Demographic 64.86% 72.07% 65.77% 65.77%
Finance 54.48% 66.21% 51.03% 52.41%
Industry 49.40% 52.69% 49.10% 47.90%
Macro 58.33% 61.22% 56.09% 56.41%
Micro 57.81% 58.44% 60.50% 63.92%
Other 40.38% 48.07% 48.07% 46.15%
Auto ARIMA (quadratic error) vs Auto ARIMA (absolute error)
Category MAPE MASE MAE RMSE
Demographic 51.35% 49.55% 49.55% 51.35%
Finance 49.66% 48.27% 48.27% 50.34%
Industry 58.38% 58.68% 58.68% 58.98%
Macro 53.53% 52.56% 52.56% 50.96%
Micro 52.11% 51.48% 51.48% 51.69%
Other 50.00% 53.85% 53.85% 51.92%

Table 6.11: Percentage of time series, in each category, where a model showed
better forecast performance across metrics. The percentages represent the first
model in each comparison section.

Continuing with the previous analysis, Figure 6.7 presents the distribu-
tion of error metrics across different time series categories. Notably, each metric
exhibited distinct characteristics across the series categories. For instance, the
demographic time series category displayed greater variability in its results
compared to the Micro category. This observation highlights the importance
of considering the specific characteristics of each time series category when
assessing forecast accuracy.
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Figure 6.7: Boxplots comparing the distribution of each error metric (in log
scale) for each model.

Analyzing the MAPE results, similar behavior was observed, particularly
in the Industry and Macro categories. For demographic time series, the
SARIMA model exhibited the smallest median MAPE. In contrast, for the
Finance and Other categories, the key distinction between the models lay
in their variability. SARIMA showed a seemingly smaller variance in the
Finance category, while both versions of the proposed model demonstrated
lower variability in the MAPE metric than the benchmark methodology in
the Other category. In the Micro category, the presence of outliers was more
frequent in the proposed models.

Regarding the MASE metric, SARIMA displayed a notably smaller
median MASE than both proposed models in the Demographic and Finance
categories. For the remaining categories, similar results were observed in terms
of median, with SARIMA tending to exhibit less variability. The MAE and
RMSE metrics showed comparable patterns, with all three models yielding
similar results, except in the Other category where the proposed models showed
potentially lower variability than SARIMA.

Furthermore, Table 6.12 presents the p-values obtained from the bilateral
Wilcoxon test used to compare the performance of the three models within each
metric and time series category. Specifically, comparing the proposed model
with a quadratic error objective function to SARIMA, the test indicated a
significant difference only in the Macro and Micro categories, with significance
levels of 10% and at least 2%, respectively. The MASE metric revealed the most
pronounced differences between the methodologies, except in the Industry and
Other categories where there was insufficient evidence to reject the equality
hypothesis. Similarly, the MAE and RMSE metrics exhibited similar patterns,
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indicating divergent performances between the models primarily in the Micro
category.

SARIMA vs Auto ARIMA (quadratic error)
Category MAPE MASE MAE RMSE
Demographic 0.3470 < 0.01 0.3343 0.3250
Finance 0.5611 < 0.01 0.7516 0.7773
Industry 0.5145 0.1639 0.4096 0.3728
Macro 0.0918 0.0155 0.1616 0.1801
Micro 0.0171 < 0.01 < 0.01 < 0.01
Other 0.6514 0.3089 0.3343 0.4685

SARIMA vs Auto ARIMA (absolute error)
Category MAPE MASE MAE RMSE
Demographic 0.1464 < 0.01 0.1672 0.1441
Finance 0.5763 < 0.01 0.8886 0.7751
Industry 0.9685 0.4374 0.8838 0.8730
Macro 0.0828 < 0.01 0.1453 0.1785
Micro < 0.01 < 0.01 < 0.01 < 0.01
Other 0.2908 0.2084 0.3343 0.3120
Auto ARIMA (quadratic error) vs Auto ARIMA (absolute error)
Category MAPE MASE MAE RMSE
Demographic 0.6367 0.7571 0.7827 0.7239
Finance 0.9687 0.8709 0.8599 0.9542
Industry 0.5208 0.5317 0.4882 0.4427
Macro 0.8819 0.8248 0.9471 0.9552
Micro 0.8166 0.6689 0.8609 0.8262
Other 0.5783 0.8479 0.7923 0.7231

Table 6.12: P-value of the bilateral Wilcoxon test for all three model combina-
tions, categories, and metrics.

It is possible to notice that the tests indicate similar conclusions in the
comparison of the proposed model with absolute error objective function and
SARIMA. Significant differences were detected in time series of the Micro
category, in terms of all considered metrics. Using the MAPE metric, the
test also indicates significant differences in the Macro category, considering a
significance level of at least 10%. Just like before, the MASE metric indicates
the major differences, with the industry and other categories being the only
ones in which the test did not indicate a significant difference in the forecast
results. It is also important to highlight that the test did not find evidence
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to reject the equality hypothesis for the two versions of the proposed model,
considering all metrics and categories.

So, after all this analysis, it is possible to conclude that the pro-
posed methodology was not able to show a better forecast performance than
SARIMA. On the other hand, it is necessary to acknowledge that this analysis
aimed to identify how distant this first approach is from the SARIMA model.
Despite considering only the AR components, this new methodology was able
to match the forecast performance of the benchmark in many time series across
different categories.

However, in an attempt to understand how the model would perform in
a more fair scenario compared to the SARIMA model, the same error metrics
were computed, but now only for the series for which SARIMA did not choose
any MA component. This enabled the comparison of the forecast performance
of the model for series that only have the AR component. Table 6.13 shows
the number of remaining series in each category after applying this filtering.

Category Number of Series Percentage
Demographic 21 5.54%
Finance 35 9.23%
Industry 63 16.62%
Macro 78 20.58%
Micro 155 40.90%
Other 27 7.13%
Total 379 100%

Table 6.13: Number of time series that SARIMA did not choose any MA
component in each category.

When considering only the selected set of time series with AR compo-
nents, Figure 6.8 demonstrates that the proposed model consistently outper-
forms SARIMA in terms of each error metric. Moreover, as previously ob-
served, the performance of the two versions of the proposed model appears
to be highly comparable. The box plots in Figure 6.9 further support these
findings, illustrating consistent superiority across different categories.

In summary, although additional refinements are required for the pro-
posed approach to consistently outperform SARIMA across all cases, recent
findings suggest that the model demonstrates superior performance when ap-
plied to series with exclusively autoregressive (AR) components, surpassing
the benchmark model.
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Figure 6.8: Boxplots comparing the distribution of each error metric (in log
scale) for each model, considering only the series without MA component.

Figure 6.9: Boxplots comparing the distribution of each error metric (in log
scale) for each model and each category, considering only the series without
MA component.



7
Conclusion and future work

This dissertation presents SARIMAX.jl, a Julia package designed for
ARIMA process estimation. Leveraging Julia’s computational capabilities and
advanced optimization techniques, SARIMAX.jl offers a new approach to
time series modeling. Chapter 4 on Estimation and Specification explains the
theoretical concepts behind ARIMA models and their integration within the
proposed optimization framework.

The main contribution of this work is the separation of model formulation
from the estimation process, allowing for the incorporation of various state-
of-the-art techniques in ARIMA estimation and giving users the flexibility to
add knowledge-based constraints to the model. SARIMAX.jl employs advanced
optimization techniques to enhance stability, robustness, and accuracy in
modeling ARIMA processes.

Additionally, the proposed modeling approach offers significant flexibil-
ity. The optimization framework allows for the integration of regularization
techniques and supports diverse objective functions, making SARIMAX.jl a
versatile tool for time series analysts. Through a comparative study, SARI-
MAX.jl demonstrates superior performance across various in-sample metrics
and a competitive performance when compared to the R forecast package in
the M4 competition monthly series, establishing it as a reliable open-source
option for time series modeling.

Furthermore, this dissertation proposes a mixed-integer optimization
approach for the specification and estimation of a specific subset of SARIMA
models, known as autoregressive integrated (ARI) models. This approach
ensures global optimality in parameter estimation and the specification of the
integration order and autoregressive part.

In conclusion, SARIMAX.jl represents a competitive tool in time se-
ries modeling, characterized by computational sophistication, optimization
strength, and reliability. This work paves the way for a series of extensions
that can benefit users across various fields, enhancing their ability to model
and forecast time series data with greater accuracy and flexibility.

7.1
Future work

Future development of SARIMAX.jl presents several promising directions
to enhance its capabilities as a leading tool in time series modeling. A primary
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focus is incorporating advanced regularization methods into the optimization
framework. Integrating techniques such as L1 and L2 regularization will enable
users to effectively address outliers and multicollinearity.

Another key area involves extending the optimal specification method
to include the Moving Average (MA) component. This will improve SARI-
MAX.jl’s ability to handle the complexities of time series modeling by deter-
mining the optimal orders for both the Autoregressive (AR) and MA compo-
nents. This enhancement aims to provide a comprehensive framework for time
series analysts, ensuring the tool remains relevant for diverse real-world data.

Exploring the integration of stationarity and invertibility constraints
into the optimization framework is another promising direction. This effort
will refine the estimation process and ensure that resulting models adhere to
essential statistical properties.

Finally, the use of high-performance computing, such as Graphical Pro-
cessing Units (GPUs), can significantly enhance the applicability of ARIMA
models in commercial applications, enabling faster and more efficient process-
ing of large datasets.
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